A Bayesian forecasting model: predicting U.S. male mortality.
نویسنده
چکیده
This article presents a Bayesian approach to forecast mortality rates. This approach formalizes the Lee-Carter method as a statistical model accounting for all sources of variability. Markov chain Monte Carlo methods are used to fit the model and to sample from the posterior predictive distribution. This paper also shows how multiple imputations can be readily incorporated into the model to handle missing data and presents some possible extensions to the model. The methodology is applied to U.S. male mortality data. Mortality rate forecasts are formed for the period 1990-1999 based on data from 1959-1989. These forecasts are compared to the actual observed values. Results from the forecasts show the Bayesian prediction intervals to be appropriately wider than those obtained from the Lee-Carter method, correctly incorporating all known sources of variability. An extension to the model is also presented and the resulting forecast variability appears better suited to the observed data.
منابع مشابه
Improving Predictions Using Ensemble Bayesian Model Averaging
We present ensemble Bayesian model averaging (EBMA) and illustrate its ability to aid scholars in the social sciences to make more accurate forecasts of future events. In essence, EBMA improves prediction by pooling information from multiple forecast models to generate ensemble predictions similar to a weighted average of component forecasts. The weight assigned to each forecast is calibrated v...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملDepartment of Economics Forecasting in Large Macroeconomic Panels Using Bayesian Model Averaging
This paper considers the problem of forecasting in large macroeconomic panels using Bayesian model averaging. Theoretical justi...cations for averaging across models, as opposed to selecting a single model, are given. Practical methods for implementing Bayesian model averaging with factor models are described. These methods involve algorithms which simulate from the space de...ned by all possib...
متن کاملThe future of death in America.
Population mortality forecasts are widely used for allocating public health expenditures, setting research priorities, and evaluating the viability of public and private pensions, and health care financing systems. In part because existing methods forecast less accurately when based on more information, most forecasts are still based on simple linear extrapolations that ignore known biological ...
متن کاملSian Vector Error Corrections Model of the U.s. Economy
This paper presents a small-scale macroeconometric time-series model that can be used to generate short-term forecasts for U.S. output, inflation, and the rate of unemployment. Drawing on both the Bayesian VAR and vector error corrections (VEC) literature, I specify the baseline model as a Bayesian VEC. I document the model’s forecasting ability over various periods, examine its impulse respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2006